' SofaJplDemoVb2_1.vb
' Demonstration program for SofaJpl DLL v. 2.1.2.
' Paul S. Hirose, 2018 August 26
' DOCUMENTATION
' The Visual Studio Object Browser displays the main SofaJpl documentation. After adding a
' reference to SofaJpl to your project, open Object Browser and expand the SofaJpl namespace.
' revision history
#If False Then
2018-09-09 Added a compatibility mode to duplicate the equatorial, ecliptical, and az/el of JPL
Horizons. The first two agree to 1 mas in my tests. Az/el agrees .0001 deg, which is the Horizons
output precision.
#End If
' The time scales you can use for input.
#Const UTC = 1
#Const UT1 = 2
#Const TT = 3
' Set this to one of the time scales above.
#Const TIMESCALE = UTC
' After the binary ephemeris is created, set this False to eliminate redundant processing of the
' multi megabyte ASCII ephemeris every time the program runs.
#Const MAKE_EPHEMERIS = False
' If #define is un-commented, use the delta T you provide. Otherwise use the SofaJpl delta T model.
' Not used if time scale is UTC.
#Const MANUAL_DELTA_T = False
' If True, use a precession nutation model compatible with JPL Horizons: IAU 1976 / 80
' precession / nutation, no frame bias, apply IERS pole offsets.
' NOTE: To obtain coordinates in the horizontal system or the ITRS, compatible with Horizons, it is
' also necessary to activate the MANUAL_DELTA_T option and supply the correct delta T of date.
' In addition, for compatible coordinates in the horizontal system set the deflection of the
' vertical parameters (xi and eta) to zero.
#Const HORIZONS = False
Imports System
' Everything in SofaJpl is in the HirosePS.SofaJpl namespace.
Imports HirosePS
Module Module1
' The leap second table. One is included in the SofaJpl distribution .zip file.
Dim _leapsecTable = "C:\Users\Stan\Documents\astro\SofaJpl_2_1_2\leapSecTable.txt"
' JPL ASCII ephemeris and header. Must be downloaded from JPL. Not needed after they are
' converted to a binary ephemeris.
Dim _asciiEphemeris As String = "C:\Users\Stan\Documents\astro\jpl\ascp2000.422"
Dim _ephemerisHeader As String = "C:\Users\Stan\Documents\astro\jpl\header.422"
' The binary JPL ephemeris to create and use.
Dim _binaryEphemeris As String = "binp2000_2099.422"
' mathematical constants
Dim _degPerHour As Double = 15.0
' an enumeration of the three possible angle output formats
Enum angleFormat
D
DM
DMS
End Enum
' output format desired by the user
Dim _format As angleFormat
' These control the output resolution of angle and time. The values are computed automatically
' from the angle accuracy set by the user.
Dim _angleResolution As Double ' resolution units per degree
Dim _timeResolution As Double ' resolution units per hour
' Number of decimal places in the floating point 'f' format to achieve unit vector rectangular
' coordinate precision comparable to the angles.
Dim _vectorResolution As Integer
Sub Main()
' Set the display format and angle accuracy.
_format = angleFormat.DMS
Dim angleAccuracy As Double = SofaJpl.Angle.DmsToRad(0, 0, 0.1)
' Set the epoch.
Dim year As Integer = 2018
Dim month As Integer = 6
Dim day As Integer = 6
Dim hour As Integer = 4
Dim minute As Integer = 0
Dim second As Double = 0.0
Dim julian As Boolean = False ' true if date is in Julian calendar
Dim deltaT As SofaJpl.Duration
#If TIMESCALE = utc Then
Dim ut1MinusUtc As SofaJpl.Duration = SofaJpl.Duration.FromSeconds(0.07522)
#Else
#If MANUAL_DELTA_T Then
deltaT = SofaJpl.Duration.FromSeconds(69.109)
#Else
' Get delta T from the SofaJpl model.
deltaT = SofaJpl.DeltaT.GetDeltaT(
New SofaJpl.JulianDate(year, month, day, hour, minute, second, julian))
#End If
#End If
' Observer position.
Dim obsName = "Kitt Peak Observatory" ' name of topocenter (optional)
Dim lon As Double = SofaJpl.Angle.DmsToRad(-111, 36, 0.0) ' east longitude
Dim lat As Double = SofaJpl.Angle.DmsToRad(31, 57, 48.0) ' north latitude
Dim height As Single = 2100.0F ' meters above ellipsoid
' This instance of the Topocenter class will supply the observer position and velocity
' with respect to the ICRS.
Dim obs As SofaJpl.Topocenter = New SofaJpl.Topocenter(lat, lon, height)
' Construct an Atmosphere object to apply refraction. The parameters required by the
' constructor are type "float", thus the f suffix on the numbers.
Dim altimiterSetting As Single = 29.9F *
SofaJpl.Atmosphere.MillibarsPerInchHg ' millibars
Dim degC As Single = 12.0F ' Celsius
Dim dewPointC As Single = 0.0F ' Celsius.
Dim atm As New SofaJpl.Atmosphere(height, degC, altimiterSetting, dewPointC, False)
' polar motion (radians)
Dim poleX As Double = SofaJpl.Angle.DmsToRad(0, 0, 0)
Dim poleY As Double = SofaJpl.Angle.DmsToRad(0, 0, 0)
' deflection of the vertical at the observer (radians)
Dim xi As Double = SofaJpl.Angle.DmsToRad(0, 0, 0)
Dim eta As Double = SofaJpl.Angle.DmsToRad(0, 0, 0)
' Create a binary ephemeris from JPL ASCII files.
#If MAKE_EPHEMERIS Then
Console.WriteLine(vbCrLf & "CREATING BINARY JPL EPHEMERIS." & vbCrLf)
SofaJpl.JplEphemeris.AsciiToBinary(_ephemerisHeader, _asciiEphemeris, _binaryEphemeris)
#End If
' Open the binary JPL ephemeris. This loads the entire ephemeris into RAM. Even if the
' target body is a star, a solar system ephemeris is required for parallax, aberration,
' and light deflection due to solar gravitation.
Dim eph As New SofaJpl.JplEphemeris(_binaryEphemeris)
' There are several mutually exclusive ways to specify the target body.
' Use the SofaJpl star catalog, a subset of the Hipparcos catalog complete to mag. 3.
#If False Then
' Create a HipparcosCatalog object.
Dim catalog As New SofaJpl.HipparcosCatalog()
' Look up the star name in the catalog we just constructed, and construct a Star object.
' The current SofaJpl implementation requires a full match (not substring) to a designation
' in the name dictionary. It may be necessary to examine the dictionary (star_names.vot)
' with a text editor to find the correct name of a star.
Dim body As SofaJpl.Body = catalog.GetStar("name Vega", eph)
#End If
' Star, from data you supply. The first parameter is the epoch of the data, J2000.0 in
' this case.
#If False Then
Dim body As New SofaJpl.Star(SofaJpl.JulianDate.J2000Base, 293.0899579 / 15.0,
+69.6611767, 173.77, 597.482, -1738.313, 26.78, eph, "sig dra")
#End If
' Solar system body in the JPL ephemeris. The correction for light time iterates until the
' solution converges to the specified angle accuracy.
#If True Then
Dim body As New SofaJpl.JplBody(SofaJpl.JplEphemeris.Body.Venus, eph,
angleAccuracy)
#End If
' Finished setting parameters. Calculate and display results.
' Compute the angle, time, and rectangular coordinate resolution consistent with the angle
' accuracy (radians) specified by user. These variables control output formatting.
_angleResolution = 1.0 / SofaJpl.Angle.RadiansToDegrees(angleAccuracy)
_timeResolution = _angleResolution * _degPerHour
' Since CInt rounds to the nearest integer, the expression yields, for example, 2 decimal
' places of vector resolution when the angle accuracy is 1/10 to 1/100 radian.
_vectorResolution = CInt(-Math.Log10(angleAccuracy) + 0.5)
If (_vectorResolution < 1) Then
_vectorResolution = 1 ' Always display at least 1 decimal place.
End If
' Load the leap second table.
SofaJpl.Utc.LoadTableFromFile(_leapsecTable)
' Calculate UT1 and TT. UTC is not calculated (yet) unless it's the input time scale.
Dim ut1, tt As SofaJpl.JulianDate
Dim utc As SofaJpl.Utc
#If TIMESCALE = utc Then
utc = New SofaJpl.Utc(year, month, day, hour, minute, second, julian)
tt = utc.TerrestrialTime
ut1 = New SofaJpl.JulianDate(year, month, day, hour, minute, second, julian) + ut1MinusUtc
deltaT = tt - ut1
#End If
#If TIMESCALE = ut1 Then
ut1 = New SofaJpl.JulianDate(year, month, day, hour, minute, second, julian)
tt = ut1 + deltaT
#End If
#If TIMESCALE = tt Then
tt = New SofaJpl.JulianDate(year, month, day, hour, minute, second, julian)
ut1 = tt - deltaT
#End If
' Display date and time in UTC.
' The TimeFields class breaks down a JulianDate into year, month, etc.
Dim tf1 As SofaJpl.TimeFields
#If TIMESCALE = utc Then
tf1 = utc.ToTimeFields(_timeResolution, julian)
Console.WriteLine("{0} UTC", tf1)
#Else
' The time input from the user was UT1 or TT, so it's not safe to assume conversion to UTC
' is possible. It must be compared to the UTC table boundaries, which are in terms of TAI.
Dim tai As SofaJpl.JulianDate = tt - SofaJpl.Duration.TTMinusTai
If tai >= SofaJpl.Utc.DefaultTable.FirstTai And tai <= SofaJpl.Utc.DefaultTable.LastTai Then
utc = New SofaJpl.Utc(tt)
tf1 = utc.ToTimeFields(_timeResolution, julian)
Console.WriteLine("{0} UTC", tf1)
End If
#End If
' Display UT1.
tf1 = ut1.ToTimeFields(_timeResolution, julian)
Console.WriteLine("{0} UT1", tf1)
' Display TT as date and time.
tf1 = tt.ToTimeFields(_timeResolution, julian)
Console.WriteLine("{0} TT", tf1)
If julian Then
Console.WriteLine("Dates are Julian calendar.")
Else
Console.WriteLine("Dates are Gregorian calendar.")
End If
' Display TT as 2-part Julian date.
Console.WriteLine("JD {0} TT", tt)
' Display delta T.
Dim sex1 As New SofaJpl.Sexagesimal(deltaT.ToHours(), _timeResolution)
Console.WriteLine("{0:+fhms} delta T", sex1)
' Display polar motion.
Console.WriteLine(vbCrLf & "polar motion")
displayPolarMotion(poleX, poleY, "x, y")
' Display topocenter geodetic and rectangular coordinates.
Console.WriteLine()
Console.WriteLine(obsName) ' name of observatory
displayGeodetic(lon, lat, "E lon, N lat")
Console.WriteLine("{0:f1} meters above ellipsoid", height)
Dim obsVec As SofaJpl.Vector = obs.ToVector()
displayXyz(obsVec, "ITRS unit vector", "modulus (km)")
' Display deflection of the vertical. The same format as polar motion is appropriate.
Console.WriteLine(vbCrLf & "deflection of the vertical")
displayPolarMotion(xi, eta, "xi, eta")
' Display atmosphere conditions.
Console.WriteLine(vbCrLf & "{0:f0} C ({1:f0} F) at observer",
atm.StationTemperature,
atm.StationTemperature * 1.8 + 32.0)
Console.WriteLine("{0,6:f1} mb ({1,5:f2}"" Hg) altimeter setting",
atm.AltimeterSetting,
atm.AltimeterSetting / SofaJpl.Atmosphere.MillibarsPerInchHg)
Console.WriteLine("{0,6:f1} mb ({1,5:f2}"" Hg) station pressure",
atm.StationPressure,
atm.StationPressure / SofaJpl.Atmosphere.MillibarsPerInchHg)
If (atm.HumidityIsRelative) Then
Console.WriteLine("{0:f0}% relative humidity", atm.Humidity)
Else
Console.WriteLine("{0:f0} C ({1:f0} F) dew point",
atm.Humidity,
atm.Humidity * 1.8 + 32.0)
End If
' Create rotation matrices for the coordinate transformations.
' Old code. To be deleted.
#If False Then
' GCRS to celestial intermediate system
Dim gcrsToCirs = SofaJpl.RMatrix.GcrsToCirs06b(tt)
' GCRS to true equator and equinox of date
Dim gcrsToTrue = SofaJpl.RMatrix.GcrsToTrue06b(tt)
' GCRS to ecliptic and true equinox
Dim gcrsToEcliptic = SofaJpl.RMatrix.GcrsToEclipTrue06b(tt)
' GCRS to ITRS, including polar motion
Dim gcrsToItrs = SofaJpl.RMatrix.GcrsToItrs06b(tt, ut1, poleX, poleY)
' ITRS to horizontal (east, north, zenith) system, including deflection of the vertical
Dim itrstoHor = SofaJpl.RMatrix.ItrsToHor(lat, lon, xi, eta)
' GCRS to horizontal, is a product of two of the preceding matrices
Dim gcrsToHor As SofaJpl.RMatrix = itrstoHor * gcrsToItrs
#End If
' ITRS to horizontal (east, north, zenith) system, including deflection of the vertical
Dim itrstoHor = SofaJpl.RMatrix.ItrsToHor(lat, lon, xi, eta)
' polar motion matrix (terrestrial intermediate system to ITRS)
Dim tirsToItrs = SofaJpl.RMatrix.TirsToItrs(tt, poleX, poleY)
' GCRS to true equator & equinox (IAU 2006 precession and 2000B nutation).
Dim gcrsToMean06 = SofaJpl.RMatrix.Precess06(tt)
Dim eps06 = SofaJpl.RMatrix.MeanObliq06(tt) ' mean obliquity
Dim dPsi00, dEps00 As Double ' nutation in longitude and obliquity
SofaJpl.RMatrix.NutationAngles00b(tt, dPsi00, dEps00)
Dim gcrsToTrue06 = SofaJpl.RMatrix.Nutate(eps06, dPsi00, dEps00) * gcrsToMean06
#If HORIZONS Then
' Generate coordinates compatible with JPL Horizons (1976/80 precession/nutation).
' In SofaJpl, 1976 precession includes frame bias, which must be removed for
' Horizons compatibility.
Dim gcrsToMean = SofaJpl.RMatrix.Precess76(tt) * SofaJpl.RMatrix.IcrsToJ2000.Transpose()
' Calculate the GCRS to ecliptic (mean equinox) rotation matrix.
Dim eps = SofaJpl.RMatrix.MeanObliq80(tt) ' mean obl.
Dim gcrsToEclipticMean = SofaJpl.RMatrix.GcrsToEclip(gcrsToMean, eps)
' GCRS vector to the CIP, based on the IAU 2006 precession & 2000 nutation models.
Dim cipGcrs06 = gcrsToTrue06.Row(3)
' Transform it to spherical coords in the 1976/80 ecliptic and mean equinox system.
Dim cipEclip06 = gcrsToEclipticMean * cipGcrs06
Dim cipSph = New SofaJpl.Spherical(cipEclip06)
' Derive and apply the nutation angles to obtain the GCRS to true equator/equinox matrix.
Dim dPsi, dEps As Double
dPsi = SofaJpl.Angle.HalfPi - cipSph.LonEast
dEps = cipSph.NPD - eps
Dim gcrsToTrue = SofaJpl.RMatrix.Nutate(eps, dPsi, dEps) * gcrsToMean
' Compute the GCRS to terrestrial intermediate matrix
Dim gast = SofaJpl.Angle.Gast94(ut1)
Dim gcrsToTirs = SofaJpl.RMatrix.GcrsToTirs(gcrsToTrue, gast)
#Else ' Generate coordinates compatible with IAU 2006/00 precession/nutation.
' Mean obliquity and nutation in obliquity have already been computed.
Dim eps = eps06
Dim dEps = dEps00
' GCRS to true equator/equinox matrix has already been computed.
Dim gcrsToTrue = gcrsToTrue06
' Get X and Y of the celestial intermediate pole.
Dim cipX, cipY As Double
gcrsToTrue.CipXY(cipX, cipY)
' Form the GCRS to celestial intermediate matrix.
Dim gcrsToCirs = SofaJpl.RMatrix.GcrsToCirs(cipX, cipY,
SofaJpl.RMatrix.S06(tt, cipX, cipY))
' Greenwich apparent sidereal time.
Dim gast = SofaJpl.Angle.Gast06b(ut1, tt)
' Earth rotation angle
Dim era = SofaJpl.Angle.Era00(ut1)
' Compute the GCRS to terrestrial intermediate matrix
Dim gcrsToTirs = SofaJpl.RMatrix.GcrsToTirs(gcrsToCirs, era)
#End If
' End code compatible with IAU 2006/00 precession/nutation. The remaining rotation
' matrix computations are common to IAU 2006/00 and JPL Horizons modes.
' GCRS to ecliptic and true equinox
Dim gcrsToEcliptic = SofaJpl.RMatrix.GcrsToEclip(gcrsToTrue, eps + dEps)
' GCRS to ITRS, including polar motion
Dim gcrsToItrs = tirsToItrs * gcrsToTirs
' GCRS to horizontal, including deflection of the vertical.
Dim gcrsToHor = itrstoHor * gcrsToItrs
' Display barycentric coordinates of the body.
Console.WriteLine(vbCrLf & "{0} barycentric position & velocity", body.Name)
Dim pv1 = body.Barycentric(tt)
displayRaDec(pv1.Position, "RA, dec (ICRS)")
displayXyz(pv1.Position, "unit vector (ICRS)", "distance (km)")
displayXyz(pv1.Velocity, "velocity unit vector", "km/day")
' heliocentric coordinates
Console.WriteLine(vbCrLf & "{0} heliocentric position & velocity", body.Name)
pv1 = body.Heliocentric(tt)
displayRaDec(pv1.Position, "RA, dec (ICRS)")
displayXyz(pv1.Position, "unit vector (ICRS)", "distance (km)")
displayXyz(pv1.Velocity, "velocity unit vector", "km/day")
' geocentric coordinates
Console.WriteLine(vbCrLf & "{0} geocentric geometric position & velocity", body.Name)
pv1 = body.GeocentricGeometric(tt)
displayRaDec(pv1.Position, "RA, dec (ICRS)")
displayXyz(pv1.Position, "unit vector (ICRS)", "geometric distance (km)")
displayXyz(pv1.Velocity, "velocity unit vector", "km/day")
Console.WriteLine(vbCrLf & "{0} geocentric astrometric place", body.Name)
Dim vec1 = body.GeocentricAstrometric(tt)
displayRaDec(vec1, "RA, dec (ICRS)")
displayModulus(vec1, "astrometric distance (km)")
Console.WriteLine(vbCrLf & "{0} geocentric apparent place", body.Name)
vec1 = body.GeocentricApparent(tt)
displayRaDec(vec1, "RA, dec (ICRS)")
displayRaDec(gcrsToTrue * vec1, "equinox RA, dec")
#If Not HORIZONS Then
displayRaDec(gcrsToCirs * vec1, "intermediate RA, dec")
#End If
displayEcliptical(gcrsToEcliptic * vec1, "ecliptic true lon, lat")
' Geographic position of the body in the ITRS. If the user provided the parameters, this
' includes polar motion.
Dim sph1 As New SofaJpl.Spherical(gcrsToItrs * vec1)
displayGeodetic(sph1.LonEast, sph1.Lat, "E lon, N lat (ITRS)")
displayGeodetic(sph1.LonWest, sph1.Lat, "W lon, N lat (ITRS)")
displayHourAngle(SofaJpl.Angle.NormPlus(sph1.LonWest + lon), "LHA")
' Semidiameter. All bodies have a property to give radius in km. Stars default to zero.
' Solar system bodies are automatically initialized to their adopted IAU radii. This
' property can be modified by the user.
Dim sd = SofaJpl.Angle.Semidiameter(vec1.Modulus(), body.Radius)
displaySemidiameter(sd, "geocentric semidiameter")
' Greenwich apparent sidereal time (IAU 2006 precession, 2000B nutation)
Console.WriteLine()
displaySiderealTime(SofaJpl.Angle.Gast06b(ut1, tt), "Greenwich apparent sidereal time")
' Earth rotation angle.
#If Not HORIZONS Then
displayHourAngle(era, "Earth rotation angle")
#End If
' topocentric coordinates
' Get the GCRS position and velocity of the topocenter in a PVVector (position and velocity
' vector). The parameter passed to ToGcrsPV() must be the ITRS to GCRS rotation matrix, but
' what we calculated earlier does the opposite transformation. Thus it's transposed to
' reverse its sense.
Dim obsPV = obs.ToGcrsPV(gcrsToItrs.Transpose())
Console.WriteLine(vbCrLf & "{0} topocentric geometric place", body.Name)
vec1 = body.TopocentricGeometric(tt, obsPV).Position
displayRaDec(vec1, "RA, dec (ICRS)")
displayModulus(vec1, "km")
Console.WriteLine(vbCrLf & "{0} topocentric astrometric place", body.Name)
vec1 = body.TopocentricAstrometric(tt, obsPV.Position)
displayRaDec(vec1, "RA, dec (ICRS)")
displayModulus(vec1, "km")
Console.WriteLine(vbCrLf & "{0} topocentric apparent place", body.Name)
vec1 = body.TopocentricApparent(tt, obsPV)
displayRaDec(vec1, "RA, dec (ICRS)")
' Transform apparent place from the GCRS to the horizontal system. If the user supplied
' the parameters, this includes polar motion and deflection of the vertical.
vec1 = gcrsToHor * vec1
' Convert to spherical coordinates.
Dim sphUnref As New SofaJpl.Spherical(vec1)
' Use the Atmosphere object created earlier to generate refracted spherical coordinates.
' The application of refraction is iterative, so the desired accuracy must be passed
' to Refract().
Dim sphRefr As SofaJpl.Spherical = atm.Refract(sphUnref, angleAccuracy)
Console.WriteLine(vbCrLf & "{0} azimuth, zenith distance, elevation", body.Name)
displayAzZd(sphUnref, "az, unrefracted ZD")
displayAzEl(sphUnref, "az, unrefracted el")
displayAzEl(sphRefr, "az, refracted el")
' Semidiameter. All bodies have a property to give radius in km. Stars default to zero, but
' solar system bodies are automatically initialized to their adopted IAU radii.
sd = SofaJpl.Angle.Semidiameter(vec1.Modulus(), body.Radius)
displaySemidiameter(sd, "topocentric semidiameter")
' If applicable, display phase angle: the separation angle, at the body, between
' vectors directed to the Sun and the observer. These are the negatives of vectors to the
' body's heliocentric and topocentric positions in the ICRS. If we omit the negations,
' both vectors are off by 180 degrees and thus the angle between them is still correct.
If body.IsSolarSystemBody And body.IsSun = False Then
Dim earth As New SofaJpl.JplBody(SofaJpl.JplEphemeris.Body.Earth, eph, angleAccuracy)
Dim sun As New SofaJpl.JplBody(SofaJpl.JplEphemeris.Body.Sun, eph, angleAccuracy)
Dim earthVec = body.TopocentricGeometric(tt, obsPV).Position
Dim sunVec = body.Heliocentric(tt).Position
Dim pa As Double = earthVec.SeparationAngle(sunVec)
Console.WriteLine("{0:f0}° phase angle (0 = full, 180 = new)",
SofaJpl.Angle.RadiansToDegrees(pa))
End If
End Sub
' helper methods to display data with the format and precision selected by user
''' <summary>
''' Display the modulus of a vector.
''' </summary>
''' <param name="vec">the vector</param>
''' <param name="label">string to display after the modulus</param>
Sub displayModulus(ByVal vec As SofaJpl.Vector, ByVal label As String)
Dim sb1 As New System.Text.StringBuilder("{0:e", 8)
' The _vectorResolution value is appropriate for the 'f' format. But the 'e' format gives
' one more significant digit, so subtract 1.
sb1.Append(_vectorResolution - 1)
sb1.Append("} ")
Console.WriteLine(sb1.ToString() + label, vec.Modulus())
End Sub
''' <summary>
''' Display hour angle as a sexagesimal.
''' </summary>
''' <param name="angle">hour angle (radians) </param>
''' <param name="str">string to display after the angle</param>
Sub displayHourAngle(ByVal angle As Double, ByVal str As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1}"
Case Else
formatString = "{0:3a°'""} {1}"
End Select
Dim sex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(angle), _angleResolution, 360)
Console.WriteLine(formatString, sex, str)
End Sub
''' <summary>
''' Display sidereal time as a sexagesimal.
''' </summary>
''' <param name="gast">sidereal time (radians)</param>
''' <param name="label">string to display after the angle</param>
''' <remarks>Unless the DMS format is selected, display degrees, not hours.</remarks>
Sub displaySiderealTime(ByVal gast As Double, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1}"
Case Else
formatString = "{0:2ahms} {1}"
End Select
Dim sex As SofaJpl.Sexagesimal
If _format = angleFormat.DMS Then
sex = New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToHours(gast), _timeResolution, 24)
Else
sex = New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(gast), _angleResolution, 360)
End If
Console.WriteLine(formatString, sex, label)
End Sub
''' <summary>
''' Display semidiameter as a sexagesimal.
''' </summary>
''' <param name="sd">semidiameter (radians)</param>
''' <param name="label">string to display after the angle</param>
Sub displaySemidiameter(ByVal sd As Double, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:c°'""} {1}"
Case angleFormat.DM
formatString = "{0:e°'""} {1}"
Case Else
formatString = "{0:f°'""} {1}"
End Select
sd = SofaJpl.Angle.RadiansToDegrees(sd)
Dim sex As New SofaJpl.Sexagesimal(sd, _angleResolution)
Console.WriteLine(formatString, sex, label)
End Sub
''' <summary>
''' Display polar motion angles as sexagesimals.
''' </summary>
''' <param name="poleX">pole X (radians)</param>
''' <param name="poleY">pole Y (radians)</param>
''' <param name="label">string to display after the angles</param>
Sub displayPolarMotion(ByVal poleX As Double, ByVal poleY As Double, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:+c°'""} {1:+c°'""} {2}"
Case angleFormat.DM
formatString = "{0:+e°'""} {1:+e°'""} {2}"
Case Else
formatString = "{0:+f°'""} {1:+f°'""} {2}"
End Select
Dim xDeg = SofaJpl.Angle.RadiansToDegrees(poleX)
Dim yDeg = SofaJpl.Angle.RadiansToDegrees(poleY)
Dim sexX As New SofaJpl.Sexagesimal(xDeg, _angleResolution)
Dim sexY As New SofaJpl.Sexagesimal(yDeg, _angleResolution)
Console.WriteLine(formatString, sexX, sexY, label)
End Sub
''' <summary>
''' Display a vector as right ascension (hours) and declination.
''' </summary>
''' <param name="vec">vector to the body with respect to the equatorial system</param>
''' <param name="label">string to display after the angles</param>
''' <remarks>Unless the DMS format is selected, display RA in degrees, not hours.</remarks>
Sub displayRaDec(ByVal vec As SofaJpl.Vector, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1:+2c°'""} {2}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1:+2b°'""} {2}"
Case Else
formatString = "{0:2ahms} {1:+2a°'""} {2}"
End Select
Dim sph As New SofaJpl.Spherical(vec)
Dim raSex As SofaJpl.Sexagesimal
If _format = angleFormat.DMS Then
raSex = New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToHours(sph.RA), _timeResolution, 24)
Else
raSex = New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(sph.RA), _angleResolution, 360)
End If
Dim decSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(sph.Dec), _angleResolution)
Console.WriteLine(formatString, raSex, decSex, label)
End Sub
''' <summary>
''' Display a vector as azimuth and elevation.
''' </summary>
''' <param name="vec">vector to the body with respect to the horizontal system</param>
''' <param name="label">string to display after the angles</param>
Sub displayAzEl(ByVal vec As SofaJpl.Vector, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1:+2c°'""} {2}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1:+2b°'""} {2}"
Case Else
formatString = "{0:3a°'""} {1:+2a°'""} {2}"
End Select
Dim sph As New SofaJpl.Spherical(vec)
Dim azSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(sph.Az), _angleResolution, 360)
Dim elSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(sph.El), _angleResolution)
Console.WriteLine(formatString, azSex, elSex, label)
End Sub
''' <summary>
''' Display a vector as ecliptic longitude and latitude.
''' </summary>
''' <param name="vec">vector to the body with respect to the ecliptic system</param>
''' <param name="label">string to display after the angles</param>
Sub displayEcliptical(ByVal vec As SofaJpl.Vector, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1:+2c°'""} {2}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1:+2b°'""} {2}"
Case Else
formatString = "{0:3a°'""} {1:+2a°'""} {2}"
End Select
Dim sph As New SofaJpl.Spherical(vec)
Dim lonSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(sph.LonEast), _angleResolution, 360)
Dim latSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(sph.Lat), _angleResolution)
Console.WriteLine(formatString, lonSex, latSex, label)
End Sub
''' <summary>
''' Display geodetic longitude and latitude.
''' </summary>
''' <param name="lon">east longitude (radians)</param>
''' <param name="lat">north latitude (radians)</param>
''' <param name="label">string to display after the angles</param>
Sub displayGeodetic(ByVal lon As Double, ByVal lat As Double, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1:+2c°'""} {2}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1:+2b°'""} {2}"
Case Else
formatString = "{0:3a°'""} {1:+2a°'""} {2}"
End Select
Dim lonSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(lon), _angleResolution, 360)
Dim latSex As New SofaJpl.Sexagesimal(
SofaJpl.Angle.RadiansToDegrees(lat), _angleResolution)
Console.WriteLine(formatString, lonSex, latSex, label)
End Sub
''' <summary>
''' Display a vector as xyz components of a unit vector and modulus.
''' </summary>
''' <param name="v">vector</param>
''' <param name="xyzLabel">label for the unit vector</param>
''' <param name="modulusLabel">label for the modulus</param>
Sub displayXyz(ByVal v As SofaJpl.Vector, ByVal xyzLabel As String,
ByVal modulusLabel As String)
Dim sb1 As New System.Text.StringBuilder("{0:f", 23)
sb1.Append(_vectorResolution)
sb1.Append("} {1:f")
sb1.Append(_vectorResolution)
sb1.Append("} {2:f")
sb1.Append(_vectorResolution)
sb1.Append("} ")
Dim uv As SofaJpl.Vector = v.Unit()
Console.WriteLine(sb1.ToString() & xyzLabel, uv.X, uv.Y, uv.Z)
displayModulus(v, modulusLabel)
End Sub
''' <summary>
''' Given a Spherical object, display azimuth and elevation as sexagesimals.
''' </summary>
''' <param name="sph">spherical coordinates in the horizontal system</param>
''' <param name="label">string to display after the angles</param>
Sub displayAzEl(ByVal sph As SofaJpl.Spherical, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
formatString = "{0:3c°'""} {1: 2c°'""} {2}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1: 2b°'""} {2}"
Case Else
formatString = "{0:3a°'""} {1: 2a°'""} {2}"
End Select
Dim az As Double = SofaJpl.Angle.RadiansToDegrees(sph.Az)
Dim el As Double = SofaJpl.Angle.RadiansToDegrees(sph.El)
Dim azSex As New SofaJpl.Sexagesimal(az, _angleResolution, 360)
Dim elSex As New SofaJpl.Sexagesimal(el, _angleResolution)
Console.WriteLine(formatString, azSex, elSex, label)
End Sub
''' <summary>
''' Given a Spherical object, display azimuth and zenith distance as sexagesimals.
''' </summary>
''' <param name="sph">spherical coordinates</param>
''' <param name="label">string to display after the angles</param>
Sub displayAzZd(ByVal sph As SofaJpl.Spherical, ByVal label As String)
Dim formatString As String
Select Case _format
Case angleFormat.D
' Zenith distance needs a different format than elevation. There's never a negative
' sign, and there can be up to 3 digits before the decimal point.
formatString = "{0:3c°'""} {1:3c°'""} {2}"
Case angleFormat.DM
formatString = "{0:3b°'""} {1:3b°'""} {2}"
Case Else
formatString = "{0:3a°'""} {1:3a°'""} {2}"
End Select
Dim az As Double = SofaJpl.Angle.RadiansToDegrees(sph.Az)
Dim zd As Double = SofaJpl.Angle.RadiansToDegrees(sph.ZenithDistance)
Dim azSex As New SofaJpl.Sexagesimal(az, _angleResolution, 360)
Dim zdSex As New SofaJpl.Sexagesimal(zd, _angleResolution)
Console.WriteLine(formatString, azSex, zdSex, label)
End Sub
End Module
[back]
(last modified 2019-05-27)